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Abstract
In this paper, we propose a new approach to document

segmentation which exploits both local texture character-
istics and image structure to segment scanned documents
into regions such as text, background, headings and im-
ages. Our method is based on the use of a multiscale
Bayesian framework. This framework is chosen because
it allows accurate modeling of both the image characteris-
tics and contextual structure of each region. The param-
eters which describe the characteristics of typical images
are extracted from a database of training images which
are produced by scanning typical documents and hand seg-
menting them into the desired components. This training
procedure is based on the expectation maximization (EM)
algorithm and results in approximate maximum likelihood
(ML) estimates of the model parameters for region textures
and contextual structure at various resolutions. Once the
training procedure is performed, scanned documents may
be segmented using a fine-to-coarse-to-fine procedure that
is computationally efficient.

1. Introduction

With the advent of modern publishing technologies, the
layout of today’s documents has never been more com-
plex. Most of them contain not only text and background
regions, but also graphics, tables and images. Therefore
scanned documents must often be segmented before other
document processing techniques, such as compression or
rendering, can be applied.

Traditional approaches to document segmentation, usu-
ally referred as top-down methods [7, 10], involve parti-
tioning the document images into blocks and then classi-
fying each block [5, 13, 16, 17]. This kind of approach
was first proposed by Wong, Casey and Wahl in 1982 [17].
They applied a technique called the run length smoothing
algorithm (RLSA) to partitioning a binary document im-
age into blocks. Each block was then classified as text or
image according to some statistical features, such as the to-
tal number of black pixels, and the horizontal white-black
transitions of data. A similar algorithm was also investi-
gated by Wang et al. for newspaper layout analysis [16].

1This project was supported by the Xerox Corporation.

In 1993, Chauvet and coworkers [5] presented a recursive
block algorithm based on RLSA. They introduced the lin-
ear closing with variable length structuring elements to ex-
tract features for block classification. Another approach
reported by Krishnamoorthy et al. [13] used a 2-D X-Y
tree structure to represent the page layout. A more detailed
survey of these approaches can be found in [9].

Traditional approaches work well in a pre-specified en-
vironment with simple layout, such as postal addresses,
business correspondences and technical papers. Compo-
nents of these documents are assumed to be rectangular in
shape with relatively uniform font and size. For example,
the RLSA assumes that the average number of white pixels
between characters and between lines are known before-
hand. However, the performance of such approaches de-
grades significantly when different components are touch-
ing or overlapping. So the robustness of these algorithms
is of concern. Also, these approaches are sensitive to skew,
so a good skew correction algorithm is needed in the pre-
processing stage.

Alternatively, texture based approaches [7, 10, 11] treat
different components of a document image, such as text,
background, images or headings, as different textures. The
scanned document images are first convolved with a set
of masks to generate feature vectors. Each feature vector
is then classified into different classes using a pre-trained
classifier, such as a neural network [7, 11]. The final step is
post-processing. For example, the post-processing in [11]
includes smoothing the labeled image, merging nearby re-
gions, removing small components and separating text from
line drawings. Generally, texture based approaches are
more robust than traditional approaches since they are less
likely to make large scale errors when the input document
image does not completely satisfy the underlying assump-
tions.

One problem associated with texture based approaches
is the mask size used for extracting local features. When
the mask size is small, it is difficult to detect large scale
textures such as large fonts. On the contrary, if a large
mask is chosen, the computation will increase dramati-
cally, and the number of parameters required to accurately
modeled the texture becomes excessive.

In this paper, we propose a new approach to the docu-
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ment segmentation which is based on a multiscale Bayesian
framework [4]. This approach exploits both local texture
characteristics and image structure to segment the scanned
documents into different regions such as text, background,
headings and images. With a multiscale image model, the
local texture characteristics are extracted at each resolution
via a wavelet decomposition. The desired image structure
is represented by a multiscale context model. Using this
context model, correct image structures can be enforced
by penalizing segmentations containing incorrect image
structures. Once a complete model is formulated, a doc-
ument image can be segmented using the sequential maxi-
mum a posteriori (SMAP) estimator [4].

The parameters needed for both the image model and
the context model are estimated from a database of training
images which are produced by scanning typical documents
and hand segmenting them into desired components. The
training procedure is based on the expectation maximiza-
tion (EM) algorithm and results in approximate maximum
likelihood (ML) estimation of the model parameters for re-
gion textures and contextual structure at each resolution.

Since both local texture characteristics and contextual
information are extracted at various resolutions, our ap-
proach can model and classify a large number of classes
which are difficult to classify with a single scale segmen-
tation approach. Also, the SMAP estimator only needs one
fine-to-coarse-to-fine propagation through resolutions; so,
the algorithm is computationally efficient. Finally, all pa-
rameters are estimated off-line, further reducing the com-
putation.

This paper is organized as follows. In section 2, we
will review the general Bayesian segmentation scheme and
introduce our multiscale document segmentation model.
Section 3 will present the segmentation algorithm. The
problem of feature extraction and parameter estimation will
be discussed in section 4. Section 5 presents the experi-
mental results, and the conclusion of this study is in sec-
tion 6.

2. Multiscale Document Segmentation

The Bayesian approach to segmentation is based on a dou-
bly stochastic model as shown in Fig. 1. The scanned doc-
ument image is modeled as a random fieldY , andX rep-
resents the unknown segmentation. The dependence be-
tween the observed image and its segmentation is modeled
by the conditional distribution ofY givenX, py|x(y|x).
The prior knowledge about the size and shapes of regions
is incorporated in the prior distributionp(x). Using Bayes
rule, the posterior distributionpx|y(x|y) can be calculated.
Then the image can be segmented by calculating an esti-
mate ofX givenY .

1

2

3

4

Y

X

Figure 1: The Bayesian segmentation model.Y is an image con-
taining different regions.X is the unobserved field containing
the class of each pixel. The behavior ofY givenX is defined as
a conditional probability distribution.

X (0)

X
(1)

X(2)

Y (0)

Y (1)

Y (2)

Figure 2: The multiscale document segmentation model. The
right pyramid is the image model, and the left pyramid is the
context model. The arrows indicates the direction of dependency.

2.1. Multiscale Document Segmentation Model

The multiscale document segmentation model (MSDM) is
a double pyramidal structure (see Fig. 2). Both pyramids
have the same lattice structureS(n) (n = 0, 1, . . . , L).
S(0) is the lattice at the finest scale with each points(0) ∈
S(0) corresponding to a single image pixel. Each pixel
s(n) at scalen corresponds to a group of four pixelss(n−1)

i

(i = 1, 2, 3, 4) at the finer scalen−1, wheres(n−1)
i are the

children ofs(n). Therefore the number of pixels inS(n) is
1/4 the number of pixels inS(n−1). The right pyramid
of the MSDM is the multiscale image model. It consists
of several random fields. Each random field, denoted as
Y (n) (n = 0, 1, . . . , L), models the scanned document at
a certain scale which is specified by the 2-D latticeS(n).
For each pixels ∈ S(n), Ys is defined as a random vari-
able. The left pyramid is called the multiscale context
model which extracts and enforces the correct context for
the segmentation. This context model consists of random
fieldsX(n) which corresponds to the 2-D latticeS(n). For
s ∈ S(n), the corresponding labelXs specifies one ofM
possible classes of a document.

The MSDM can model and classify a large variety of
classes which are interesting in document segmentation.
For example, half-tone and continuous-tone images may
be distinguished by using fine scale features; while low
resolution features can better discriminate classes such as
headings and graphics. The multiscale context model works
similarly. In order to remove random noise and make a
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smooth segmentation, we only need fine scale contextual
information, such as the majority of labels in a3×3 neigh-
borhood at the finest resolution. But to classify graphics
from text, very coarse scale contextual information may
be useful.

For the convenience of later discussion, we define

X(≤n) =
⋃
i≤n

X(i)

In the same way, we can defineX(>n). These definitions
for X can be also applied toY andS. We also useX, Y
to denoteX(≤L) andY (≤L), respectively.

The fundamental assumption of the context model is
that the sequence of random fieldsX(n) from coarse to fine
forms a Markov chain. This can be formally expressed as

P (X(n) = x(n)|X(>n) = x(>n))

= P (X(n) = x(n)|X(n+1) = x(n+1))

≡ px(n)|x(n+1)(x(n)|x(n+1)) (1)

wherepx(n)|x(n+1)(x(n)|x(n+1)) is called the transition prob-
ability.

For the image model, we assume that

1. Y (n) are conditionally independent givenX.

P (Y ∈ dy|X) =
L∏
n=0

P (Y (n) ∈ dy(n)|X) (2)

2. Y (n) is exclusively dependent onX(n).

P (Y (n) ∈ dy(n)|X = x)

= P (Y (n) ∈ dy(n)|X(n) = x(n))

≡ py(n)|x(n)(y(n)|x(n)) (3)

From (1), (2) and (3), we get

P (Y ∈ dy,X = x) =
L∏
n=0

{
py(n)|x(n)(y(n)|x(n))

px(n)|x(n+1)(x(n)|x(n+1))
}

(4)

2.2. Sequential MAP Estimation

Using the MSDM, the segmentation problem is transferred
into an optimization problem which is to minimize the av-
erage cost of an erroneous segmentation.

x̂ = arg min
x
E
[
C(X,x)|Y = y

]
(5)

whereCn(X,x) is the cost of estimating the true segmen-
tationX by the approximate segmentationx.

Because a misclassified pixel at coarse resolution will
affect more pixels than a misclassified pixel at fine reso-
lution. The average cost of an erroneous segmentation is
defined as

C(X,x) =
1

2
+

L∑
n=0

2n−1Cn(X,x)

whereCn(·, ·) is defined as

Cn(X,x) = 1−
L∏
i=n

δ(X(i) − x(i))

whereδ(X(i) − x(i)) = 1 if X(i) = x(i) andδ(X(i) −
x(i)) = 0 if X(i) 6= x(i). Using an argument similar to
that in [4], it can be shown that the solution to (5) is ap-
proximately given by the recursive equations

x̂(L) = arg max
x(L)

log py(≤L)|x(L)(y(≤L)|x(L)) (6)

x̂(n) = arg max
x(n)

{
log py(≤n)|x(n)(y(≤n)|x(n))

+ log px(n)|x(n+1)(x(n)|x̂(n+1))
}

(7)

We refer to the solution of (6) and (7) as the SMAP esti-
mator. Notice that (7) consists of two terms, one is related
toY , the data term, and the other is the context term which
is solely determined by the transition probability. If we as-
sociate correct context with a higher transition probability,
and assign incorrect context with a lower transition proba-
bility, then the segmentation which does not have a correct
context will be penalized by the context term and is un-
likely to be selected as the final segmentation.

3. Document Segmentation Algorithm

In section 2, we developed a general model for document
segmentation. All specific models will be defined in this
section. They include the assumptions forX(n) andY (n),
the probability densitypy(n)|x(n)(y(n)|x(n)), and the tran-
sition densitiespx(n)|x(n+1)(x(n)|x(n+1)).

3.1. Image Model

For the multiscale image model, we assume that the ob-
served pixels are conditionally independent given their class
labels. This assumption leads to a simple product form of
the conditional probabilityY (n) givenX(n).

py(n)|x(n)(y(n)|x(n)) =
∏

s∈S(n)

p
y

(n)
s |x

(n)
s

(y(n)
s |x

(n)
s )

wherep
y

(n)
s |x

(n)
s

(·|k) is the conditional density function for
an individual pixel given its class labelk. This conditional
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segmentation feature or dataX Y
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Figure 3: The 1-D analog of the quadtree model. The trian-
gles represent the image model, and the circles denote the con-
text model. Arrows indicate the direction of dependency among
the nodes.

independence assumption does not ignore the dependency
among image pixels. Instead, this dependency is well an-
alyzed using the context model discussed in the following
section.

3.2. Context Model

For the context model, we will restrict our choice to have
two important properties. First, the labels inX(n) will
be conditionally independent, given the labels inX(n+1).
This is the Markov chain property discussed in section 2.1.
Second, for a pixels in S(n), wheren < L, the labelX(n)

s

will only be dependent on the labels of a neighborhood at
the next coarser scaleS(n+1). This set of neighboring lo-
cations tos is defined as∂s. Based on these properties,
the transition probability mass function from coarse to fine
scale must have the form

px(n)|x(n+1)(x(n)|x(n+1))

=
∏

s∈S(n)

p
x

(n)
s |x

(n+1)
∂s

(x(n)
s |x

(n+1)
∂s )

wherep
x

(n)
s |x

(n+1)

∂s

(x
(n)
s |x

(n+1)
∂s ) is the probability mass for

x
(n)
s given its neighbors at the coarser scalex

(n+1)
∂s .

The choice of the neighborhood system∂s will finally
determine the context model. We will start from a simple
neighborhood system, the quadtree structure. Then discuss
a more general structure, the pyramidal graph structure.
Because of the advantages and the disadvantages of each
model, we will employ a hybrid model which incorporates
both the quadtree and the pyramidal graph structure.

3.2.1. Quadtree Model

In the quadtree model, each points in the pyramid is de-
pendent only on one point at the next coarser scale, which
is called the parent ofs. The 1-D analog of the quadtree
structure is shown in Fig. 3. We defined(n)

s as the set of

children ofs at scalen. We also definez(≤n)(s) as the im-
age features which are descendents ofs at scales less than
or equal ton.

z(≤n)(s) =
⋃
i≤n

⋃
r∈d(i)

s

y(i)
r

Because of the quadtree structure and the conditional
independence ofY givenX, the distribution ofY givenX
has the following product form

py(≤n)|x(n)(y(≤n)|x(n))

=
∏

s∈S(n)

p
z

(≤n)
s |x(n)

s
(z(≤n)
s |x(n)

s ) (8)

Furthermore, the density functionp
z

(≤n)
s |x(n)

s
(z

(≤n)
s |x(n)

s )

can be calculated using the following recursion.

p
z

(≤n+1)
s |x(n+1)

s
(z(≤n+1)
s |k)

= p
z

(≤n)
s |x(n+1)

s
(z(≤n)
s |k) p

y
(n+1)
s |x(n+1)

s
(y(n+1)
s |k)

=

{ ∏
r∈d(n)

s

M∑
m=1

p
z

(≤n)
r |x(n)

r
(z(≤n)
r |m)

p
x

(n)
r |x

(n+1)
s

(m|k)

}
p
y

(n+1)
s |x(n+1)

s
(y(n+1)
s |k) (9)

whereM is the number of classes. Dynamic range consid-
erations mandate the logarithm of these functions be com-
puted and stored. Therefore, we define the log likelihood
function

l(≤n)
s (k) = log p

z
(≤n)
s |x

(n)
s

(z(≤n)
s |k)

Then (9) can be rewritten as a recursion

l
(≤n+1)
s (k) = log p

y
(n)
s |x

(n)
s

(y
(n)
s |k)

+
∑
r∈d(n)

s

log

{
M∑
m=1

exp
[
l(≤n)
r (m) p

x
(n)
r |x

(n+1)
s

(m|k)
]}

Once the likelihood functions are computed, the SMAP
segmentation can be efficiently computed using (6) and
(7).

x̂(L)
s = arg max

1≤k≤M
l(≤L)
s (k)

x̂(n)
s = arg max

1≤k≤M

{
l(≤n)
s (k)

+ log p
x

(n)
s |x̂

(n+1
∂s

(k|x̂(n+1)
∂s )

}
Although the quadtree model results in an exact ex-

pression for computing the SMAP segmentation, it has the
obvious disadvantage that the quadtree model does not en-
force smooth boundaries in the segmentation. This is due
to the fact that spatially adjacent pixels may not have com-
mon neighbors at coarser scales.
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X  segmentation

neighbor

parent

child

Figure 4: The 1-D analog of the pyramidal graph model and the
1-D analog of its neighborhood system.

child

parent

neighbor
of parent

Figure 5: The neighborhood system used in the pyramidal graph
model.

3.2.2. Pyramidal Graph Model

The weekness of the quadtree model can be overcome by
increasing the number of coarse neighbors. The result-
ing model is the pyramidal graph model, shown in Fig. 4.
In the pyramidal graph model, each internal pixels has 9
coarse neighbors,∂s (Fig. 5).

Although the pyramidal graph model is more precise
than the quadtree model, its likelihood function does not
have a product form as in (8) and does not result in a simple
fine-to-coarse recursion with the form of (9) for computing
Y (≤n) given the labelsX(n).

3.2.3. Hybrid Model

As a compromise between the performance and the com-
putational complexity, we use the hybrid pyramid structure
(Fig. 6) in our segmentation algorithm. For the computa-
tion at a single scale n, the hybrid model assumes that at
all levels above n, points are connected as in the pyramidal

Pyramidal
   model

Quadtree
   Model 

Figure 6: The 1-D analog of the hybrid model. At levels above
n, points are connected as in the pyramidal graph model. At lev-
els below or equal ton, points are connected as in the quadtree
model.

graph model, and at levels below or equal to n, points are
connected as in the quadtree model. So, the conditional
likelihood of (7) has the form

log py(≤n),x(n)|x̂(n+1)(y(≤n), x(n)|x̂(n+1)) =∑
s∈S(n)

{
l(≤n)
s (x(n)

s ) + log p̃
x

(n)
s |x̂

(n+1)
∂s

(x(n)
s |x̂

(n+1)
∂s )

}
which results in the following formula for the SMAP esti-
mate ofX(n):

x̂(L)
s = arg max

1≤k≤M
l(≤L)
s (k)

x̂(n)
s = arg max

1≤k≤M

{
l(≤n)
s (k)

+ log p̃
x

(n)
s |x̂

(n+1)
∂s

(k|x̂(n+1)
∂s )

}
4. Feature Extraction and Parameter

Estimation

In this section, we will propose feature extraction and pa-
rameter estimation schemes for both the image model and
the context model. For document segmentation applica-
tions, one usually has sufficient document images for fea-
ture extraction and parameter estimation. Therefore, in
stead of estimating parameters on-line, an off-line training
approach (or supervised training) can be used to alleviate
the on-line computation, and improve the accuracy.

For the supervised training, a database of training im-
ages is produced by scanning typical documents and hand
segmenting them into the desired components.

4.1. Feature Extraction and Parameter Estimation for
Image Model

The fundamental assumption of the image model is that
Y (n) is conditionally independent givenX (2). In order
to satisfy this assumption, an orthogonal decomposition of
the original document image is desirable. Therefore, we
choose the wavelet decomposition [15] to generate the fea-
ture vector at each pixel. Also, the wavelet decomposition
gives us the desired lattice structure that has been defined
in section 2.1. In order to reduce computation, we use the
Haar wavelet basis for this purpose. The resulting feature
vector at each pixel consists of three elements which cor-
respond to the wavelet coefficients at HH, HL, LH bands,
respectively.

The conditional probability distribution of an individ-
ual pixel given its class label,p

y
(n)
s |x

(n)
s

(ys|xs) is modeled
as a multivariate Gaussian mixture density,

p
y

(n)
s |x

(n)
s

(ys|xs) =
K∑
k=1

γk py(n)
s |x

(n)
s ,k

(ys|xs, k)
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(a) (b) (c)

(f)(e)

(d)

(g) (h)

Figure 7: Context features used in experiments: (a) the label of
the parent pixel, (b) the majority, (c) the majority of four nearest
neighbors, (d) the majority of four corner neighbors, (e) the ma-
jority of a line boundary (one of four line boundaries is shown
in this figure), (f) the majority of a corner boundary (one of four
corner boundaries is shown in this figure), (g) the majority of a
center line (one of two center lines is shown in this figure), (h)
the majority of a diagonal center line (one of two diagonal cen-
ter lines is shown in this figure). When calculating a feature, only
shaded circles are considered.

wherep
y

(n)
s |x

(n)
s ,k

(ys|xs, k) is a Gaussian density with mean

µxs,k, and covariance matrixCxs,k. γk ∈ [0, 1] and
∑
k γk =

1. For largeK, the Gaussian mixture density can approxi-
mate any probability density and its parameters can be esti-
mated using the expectation maximization (EM) algorithm
[1, 6]. The orderK is chosen for each class using the Ris-
sanen criteria [14].

4.2. Tree Based Classifier for Context Model

The problem of extracting context can also be viewed as a
prediction problem. We want to predict the class ofX

(n)
s

using the classes ofX(n+1)
∂s . Since this prediction prob-

lem is discrete in nature, we use a decision tree structure
to implement it. In the decision tree, each interior node
corresponds to a test, and each terminal node (a leaf) is
assigned the conditional probability ofX(n)

s given all the
test results on the path from the root to this leaf. The tests
which are used in our approach are Boolean operations.
In other words, one is allowed to ask “true-false” ques-
tions aboutX(n+1)

∂s in order to predict the class ofX(n)
s .

For example, one can ask, “Is the parent ofs text?”, or
“Are the majority of the 9 coarse neighbors ofs heading
or background?”. This querying procedure will stop when
the class ofX(n)

s can be determined with enough confi-
dence or the number of questions asked reaches the max-
imal number of questions allowed. In our context model,
the questions aboutX(n+1)

∂s can be only asked about the
features shown in Fig. 7. In order to allow documents to
be scanned both horizontally and vertically, all questions
allowed in our model are also90◦ rotation symmetric.

...... ......

22F

21F

32F

......
R1

F11

RL

R1R1
RL

RL

F
10

F12
F42

Figure 8: How a decision tree is built using the minimum entropy
test.Ri is a Boolean operation andFj,k is the set of values that
can be taken byX(n+1)

∂s at the nodeπj,k.

With a database of training images and “ground truth”
segmentations, the decision tree can be built off-line. Ide-
ally, we want to build an optimal decision tree in the sense
that it minimizes the classification error. But for practical
applications, an optimal decision tree is too difficult, or too
computationally expensive to build. So, in this section, we
present a sub-optimal approach to build a decision tree us-
ing a greedy algorithm, called the minimum entropy test
[8]. In this approach, the test which is chosen for each new
node in the tree is the one which minimizes the residual
uncertainly at that node.

In order to formulate the entropy testing rule more pre-
cisely, we defineH(U |B) as the entropy of a random vari-
ableU given an eventB.

H(U |B) = −
∑
u

p(U = u|B) log2 P (U = u|B)

where in our case,B are the outputs of Boolean operations.
Each Boolean operation can take one of two values, 1 or
0. LetR be a set of Boolean functions.Ri(X

(n+1)
∂s ) is

the output of thei-th Boolean function givenX(n+1)
∂s . The

j-th node on thek-th level of a decision tree is denoted as
πj,k, wherek ≥ 0, 1 ≤ j ≤ 2k, andπ0,1 is the root. The
test chosen forπj,k is denoted asRπj,k . Also, letΩ be the

values which can be taken byX(n+1)
∂s , andFj,k be the set

of values which can be taken byX(n+1)
∂s at the nodeπj,k.

Then the decision tree can be built as follows (Fig. 8) using
the minimum entropy test.

1. Start from the rootπ1,0 with k = 0, j = 1, and
F1,0 = Ω.

2. Findi∗, such that

i∗ = arg min
i
H(X(n)

s |Ri(X
(n+1)
∂s ), X

(n+1)
∂s ∈ Fj,k)
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3. ChooseRi∗ to beRπj,k .

4. PartitionFj,k intoF2j−1,k+1 andF2j,k+1, such that

F2j−1,k+1 = {x(n+1)
∂s ∈ Fj,k, Ri∗(x

(n+1)
∂s ) = 1}

F2j−1,k+1 = {x(n+1)
∂s ∈ Fj,k, Ri∗(x

(n+1)
∂s ) = 0}

5. If the entropy of the tree is small enough or the max-
imal level of the decision tree is reached, stop.

6. Use a breadth-first rule to pick a new node.

7. Go to (2).

For our context model, a decision tree is built for each
resolution, except the coarsest one. After decision trees are
constructed, we need to estimate their parametersθ, where
θ is a vector whose elements are the conditional probabil-
ities ofX(n)

s at each leaf of the decision trees. Because
X(>0) are unknown, we use the EM algorithm [6] to esti-
mateθ. The EM algorithm can be written as the following
iterative procedure for finding a sequenceθ(k) that con-
verges to the ML estimate ofθ.

θ(k+1) = arg max
θ
E
[

log pθ(X
(>0))|Y,X(0), θ(k)

]
(10)

whereX(0) is the “ground truth” segmentation. The ex-
pectation in (10) is difficult to compute. However, as-
suming the pyramidal graph model, we can generate sam-
ples from the distributionp(X(>0)|Y,X(0), θ(k)) using the
Metropolis algorithm [12], and approximate the expecta-
tion in (10) using the histogram of samples.

5. Simulation Results

We test our algorithm with an image data base consisting
of 40 document images which are scanned at 100dpi. 20
images are used as training images (see Fig. 9), and the
remaining 20 images are used as test images. Training im-
ages are manually segmented into text, image, heading and
background (see Fig. 9). These segmentations are used as
“ground truth” for parameter estimation. The algorithm is
coded in C and runs on an HP model 755 workstation.

For the image model, we only extract local texture in-
formation from resolution 0 (the finest resolution) to reso-
lution 4. For each resolution, the image features are mod-
eled using a Gaussian mixture model as discussed in sec-
tion 4.1. Each Gaussian mixture density contains 10 or
fewer mixture components. For the context model in our
experiment, each decision tree has 5 levels,25 leaves.

We did two simulations. Simulation I shows the impor-
tance of both the multiscale image model and the context
model (see Fig. 10). Fig. 10(a) is the original image, and

Fig. 10(b) is the segmentation result when we used the pro-
posed document segmentation algorithm which consists of
the multiscale image model and the hybrid context model.
The segmentation is smooth with most of the areas labeled
correctly. In Fig. 10(c) and (d), we show two segmentation
results with a degraded image model or a degraded con-
text model. Fig. 10(c) is the segmentation result when we
use a degraded image model and the same hybrid context
model. The degraded image model extracts texture infor-
mation only from the finest scale. Therefore, the result-
ing segmentation has many misclassified areas. Fig. 10(d)
is the segmentation result when we use a degraded con-
text model the quadtree model, and the multiscale image
model. Comparing Fig. 10(c) and Fig. 10(d), we see the
significant improvement of the segmentation result due to
the hybrid context model. In simulation II, we tested our
algorithm on the 20 test images. Two of the results are
shown in Fig. 11.

From both simulation results, we see that most of the
regions are classified correctly. Even single text lines, page
marks (see Fig. 11(b)), periods, and the dots in the char-
acter “i” (see Fig. 11(b) and Fig. 11(d)) are labeled cor-
rectly. The gradually changing background, such as the
background in Fig. 10, is also segmented out as a solid and
smooth background region. But the textured background,
such as the heading in Fig. 10, is segmented as image in-
stead of heading and background.

6. Conclusion

A new approach for document segmentation has been pro-
posed in this paper. The model captures the characteristics
of document images by extracting both local and contex-
tual information from different scales and modeling them
as multiscale random fields. The SMAP estimator is used
to segment the document image by minimizing the ex-
pected size of the largest misclassified region.

Experiments with real document images indicate that
the new approach is computationally efficient and improves
the segmentation accuracy.
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(e) (f) (g) (h)
Figure 9: Training images and the corresponding “ground truth” segmentations: (a)-(d) are training images, and (e)-(h) are “ground
truth” segmentations. The dark areas are text, the dark grey areas are images, the light grey corresponds to background, and the white
areas are the headings.

(a) (b) (c) (d)
Figure 10: Simulation I. (a) The original image. (b) The segmentation result with the multi-resolution image model and the hybrid
context model. (c) The segmentation result with the single resolution image model and the hybrid context model. (d) The segmentation
result with the multi-resolution image model and the quadtree context model. The dark areas are text, the dark grey areas are images,
the light grey corresponds to background, and the white areas are the headings.
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(a) (b) (c) (d)
Figure 11: The original image, the segmentation results with the multi-resolution image model, and the hybrid context model of
simulation II. The dark areas are text, the dark grey areas are images, the light grey corresponds to background, and the white areas
are the headings.
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